1

eering Society

Understanding the costs of New Nuclear Power, the Large Light-Water Reactor and the Small Modular Reactor

Mario van der Borst, October 23th, 2020

Understanding the costs of nuclear power 230CT2020

Some newspaper headings

Nuclear plant nears completion after huge delays (Financial Times 2017)

Areva, the French reactor manufacturer, began building Olkiluoto in 2005 with a target for completion by 2009 at a cost of \in 3.2bn. The latest timetable would see it open almost a decade late at the end of 2018 and nearly three times over budget at \in 8.5bn.

France's Areva to pay \$554 million to settle Finnish reactor dispute (Reuters 2018)

France's Areva SA settled a long-running dispute with Finland's Teollisuuden Voima (TVO) by agreeing to pay 450 million euros (\$554 million) for cost overruns and delays at a nuclear reactor it is building with Germany's Siemens.

Progres	ss Nucle	ear New B	uild Projec	cts	H		$\left \right\rangle$
Project2010	Туре	Rated power MWe	First concrete	Original COD	Scheduled COD	Reported	\times
OL3 Finland	EPR-1	1600	12/8/2005	2009	2/2022	28/8/2020	
Flamanville 3	EPR-1	1630	4/12/2007	2012	2024	2/4/2020	F
Vogtle 3 USA	AP1000	1117	12/3/2013	2017	11/2021	11/9/2020	
Vogtle 4 USA	AP1000	1117	19/11/2013	2018	11/2022	11/9/2020	Δ
VC Summer 2	AP1000	1117	9/3/2013	2017	Cancelled 2017	31/12/2017	k
VC Summer 3	AP1000	1117	4/11/2013	2018	Cancelled 2017	31/12/2017	
Hinkley Point C1	EPR-1	1750	11/12/2018	2023	2025	2/6/2020	
Hinkley Point C2	EPR-1	1750	12/12/2019	2024	2026	2/6/2020	
Barakah 1 UAE	APR1400	1345	19/7/2012	2017	19/8/2020	Grid conn.	
Barakah 2 UAE	APR1400	1345	16/4/2013	2018	2020	19/3/2019	
Barakah 3 UAE	APR1400	1345	24/9/2014	2019	2020	19/3/2019	
Barakah 4 UAE	APR1400	1345	30/7/2015	2020	2021	19/3/2019	
Taishan 1	EPR-1	1750	10/2009	2015	2018	1/11/2019	I I
Taishan 2	EPR-1	1750	2010	2016	2019	1/11/2019	

In the near future will new nuclear stay this expensive?

- Lessons are shared and learned. The FOAK risks will decrease.
- Reactor designs are more complex as in the old days and new codes & standards are expensive to be applied.
- Now designs and codes & standards are rationalised, reducing the overnight capital costs.
- SMR's are under development, to enhance safety and reduce investment risks

In this paper we assume a NOAK status for the nuclear plants and a moderate rate of cost decrease for the VRE plants.

How to support the first nuclear new build projects?

1st nuclear projects require financing support

- Governmental risksharing, resulting in a lower WACC,
- Contract for difference
- Delivery of a cheap state loan
- Utilisation guarantee

No subsidies Offshore Wind?

- Government is paying for siting and licensing
- No fee calculated for the lease of the lot
- Offshore grid connection paid by government
- Guaranteed fee for the delivered power

Grounds for the major uncertainties in
future LCOE* assessments

Nuclear plants

System costs

Time needed to resolve FOAK problems
Lack of investors, leading to higher WACC

VRE plants

• Can the trend of cost reduction be maintained

• Sparse land. Cost of land-use likely to rise

Deeper sea locations

• The costs to create a stable grid, without access to hydro-power is costly.

• The possible cost reduction developments of battery and hydrogen (hydrolysis, storage, generation) are very difficult to predict

Utilisation

• In a reliable grid system, sufficient curtailment is required, resulting in lower utilisation factors (UF).

• A Merit Order model, to predict the future UF for the different generation types <u>cannot</u> work when most of the generators are of the zero marginal cost type.

Conclusion

• Corrected for system costs, nuclear can more than compete with VRE's, and could be successfully deployed to maintain a stable and reliable grid.

• The future costs of nuclear energy are relatively uncertain, but the same can be said about renewable energy. Nuclear can complement renewable sources, because it is dispatchable.

• New nuclear power plants would be best economically deployed while operating between 75 and 95% capacity in a base load mode, making the rest of the capacity available to support medium and long term grid needs and to produce green hydrogen.

• Increasing difficulties in financing the construction of large GEN III reactors, coupled with the need for more low-carbon dispatchable generation, is driving policy and investor interest in SMRs. This type of nuclear reactor could be more easily financed, because of it's modular design and smaller construction times.

• The first NNB projects will require financing support in terms of guarantees, as those available to the VRE's.

